
Purdue University
Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1985

Site Recovery in Replicated Distributed Database
Systems
Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
85-564

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Bhargava, Bharat, "Site Recovery in Replicated Distributed Database Systems" (1985). Computer Science Technical Reports. Paper 483.
http://docs.lib.purdue.edu/cstech/483

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

SITE RECOVERY IN REPLICATED DIS1RIBUTED
DATABASE SYSTEMS

Bharnt Bhargava
ZuwangRuan

CSD-TR-564
December 1985

SITE RECOVERY IN REPLICATED DISTRIBUTED DATABASE SYSTEMS'

Bharat BJu:ugava

ZuwangRuan

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract

A solution to the problem of integrating a recovering site inLo a distributed database

system is presented. The basic idea used for the correct recovery is to maintain a

consistent view of the status (up or down) of all sites. This view need not be the exact

current status of the sites. but is the status as perceived by other sites. The session

number is used to represent the actual state of a site. while the nominal session

number is used for the session number as perceived by other sites. The consistent

view of the nominal session numbers are maintained by control transactions. which

run concurrently with user transactions. This approach provides a high degree of

availability. A data item is available to a transaction as long as one of its copies is in

an operational site and the transaction knows lhe site's session number. The recovery

procedure allows the recovering site to resume its normal operations as soon as

possible.

- 2 -

1. Introduction

Site recovery is the problem of integra!ing a site into a distributed database system (DDBS)

when the site recovers from a failure. There are two different problems under the term "site recovery"

in the literature. The first concerns the resolution of rransactions. That is, upon recovering, the site

should commit or abort the transactions that were being processed when the failure occurred. con·

sistently with the decisions made by other operational sites in the system. Termination protocols in

conjunction wilh commit prOlocols make it possible for the recovering site to make correct decisions

on these transactions [9, 10]. The second problem deals wilh the recovery of the database. lbis prob

lem is caused by anempts to increase database availability. In a distributed database system with

replication, we would like user uansactions to proceed even if some sites arc unavailable due to

failures. When a failed site recovcrs and joins to the system, the consistency of thc entire database is

threatened because the dala items at the recovering sHe may have missed some updates. The recovery

algorithm should hide such inconsistency from user uansactioIlS, bring !:he recovery sitc up-to-date

with respect to the rest of the system, and enable the recovering site to start processing transactions as

soon as possible. This paper discusses only the second problem.

There are two main approaches to this problem. The first is to redo all missed updates at the

recovering sileo The use of multiple message spoolers [6] is one practical solution using this

approach. All updatc messages addressed to an unavailable site are saved reliably in multiple

spoolers, and the recovering site processes all of its missed messages before resuming normal opera~

dons. However, scheduling the missed operations is a nontrivial problem if there is no global clock

available. Moreover, this method is not suitable for systems in which sites may be down for quile a

long time.

The second approach takes advantage of data replication. In this approach, the data items at the

recovering site are brought up-to-date by special transactions, called copiers, which read Lhe

corresponding replicas at operational sites and refresh Lhe out-of-date copies. An advantage of this

approach is that copier transactions can run concurrently with user transactions so that the recovering

site can start processing user transactions as soon as possible. However, since data items are brought

.. This work is supponed in pan by Ihe grant from Sperry Corporation and by David Ross Fe.llowship.

· 3 -

into the database separately by independent copiers, special mechanisms are required to ensure that

the database keeps its consistency while the individual data copies are merging into it. Roughly

speaking, the algorithm must guarantee that no user transaction can read a copy at the recovering site

before the copy is renovated, and once a copy has joined into the database, all transactions writing to

the logical data item must update this copy as well. Algorithms using this approach have been pro

posed in [1, 2J.

It should be noted that a recovery procedure alone cannO[ensure a correct recovery. Without

proper conventions for user transactions the situations left by site failures may not be recoverable at

all. The following example illustrates the problem. In this example write operations are interprmed as

wriling to all currently available copies and transactions can be committed as long as all write opera

tions succeed.

Example. Transaction T" reads X and writes Y, transaction Tb reads Y and writes X. Both X and Y

have two copies at site I and site 2, called Xl. X2 and Y,. Y2' respectively. A history

R,,[XI] Rb[YI] (site 1 crashes) W,,[Yzl Wb[xzl

is acceptable by a concurrency control algorithm mat concerns only the serializability of physical

operations. Because both T" and Tb have wrinen to all currently available copies, they are committed.

When sire 1 recovers, Xl and y, may be updated by copier transactions Tc = Rc[xzlWcCz,] and

Td, = Rd,[YzlWd,[Y,]. No matter how the copiers are scheduled, the database cannot be brought up to a

consistent state. 0

The solution in [1] does not specify its model for user transactions, hence it is unclear how such

anomalies are prevented from happening. The solution proposed in [2] uses directories. Briefly, each

data item is associated with a directory that keeps the status of the data item, Le. where the copies of

the data item are available. User lransactions read the directories to decide how to interpret their read

and write operations. Directories are manipulated by status transactions, including the copiers, called

INCLUDE transactions in [2]. User transactions and status transactions are synchronized by the two

phase locking protocol so that user transactions can have a consistent view of the status of each indivi

dual data item.

In this paper we present a new solution, that also belongs to the class of the second approach.

The solution is motivated by the following considerations. First, the conventions [or user transactions

-4-

should not degrade the perfonnance of nonna! operations lao much. Hence we try [0 identify the

necessary information that user transactions need to know in order to avoid unrecoverable situations.

We have determined that a consistent view of the status of all sites is sufficient as far as site failures

are concerned. Keeping track of the status of sites turns out to be much less expensive than maintain

ing the status informaLion for individual data items. Next, the recovering site is expected to start pro

cessing tIansactions as soon as possible. Therefore. one of our goals is to reduce the work that must

be done before the recovering site resumes its normal operations. In OUf algorithm, as soon as the

recovering site has successfully informed the other operalional sites of its new status, it becomes fully

operational. The recovery of the data items proceeds concurrently with user transactions. Finally, in

order to eliminate unnecessary work, it is important to identify precisely !:he data items that have

missed updates and need to be refreshed. Rather than having a mechanism built into it, our algorithm

can choose many different methods for identifying the out-of-date items and make recovery effi

ciently.

This algorithm works with a large group of concurrency control algorithms and provides consid

erable implementation freedom. It is resilient to multiple site failures, even if a site crashes while

another site is recovering. A failed site can recover as long as there is at least one operational site in

the system. Though we foresee that a similar meLhod can be applied to the problem of the merging of

neLwork partitions, the algorithm presenLed in this paper does not handle partition failures.

The next secLion serves as a background. Section 3 presents our basic algorilhm. Section 4

sketches the correctness proof. SecLion 5 discusses its refinements. Finally, the last section concludes

this paper and outlines further work.

2. Background

In this paper, Lhe users' view of an object is called a logical data item, or data item. denoted X.

A data item is stored in the DDBS as a set ofphysical copies or copies. The copy ofX stored at site k

is denoted Xj;, and lbe fact that X has a copy at site k is denoted Xj; EX. We assume that the infonna

tion regarding where the copies of data item X are located is available at least at the resident sites of

x.

- 5 -

Users manipulate the database via transactions. A transaction is a program that accesses the

database by issuing logical operations READ and WRiTE on logical data items.

There are two major functional modules running at each she on behalf of the DDBS. The tran

saction manager (TM) supervises the execution of transactions and interprets logical operations into

requests for physical operations. The data manager (OM) carries out the physical operations on the

copies stored at the site. We assume that the DDBS runs a correct concurrency control algorithm

which ensures serializable (SR) execution of transactions. We do not discuss transaction resolution

upon site failures and recoveries in this paper, but assume that there is a correct protocol to take care

of it. Hence, in the following discussions all transactions are atomic, Le.• they either meet their specif

ications or have no effect on !:he database at alL

WheOler a transaction meets its specification depends on the interpretation of logical operations.

For example, Ole strict read-onelwrite-all (ROWA) strategy can be described as

READ (X) :=0 V {read (XI;), XI; EX},

WRITE (X) = fI. {write (XI;), XI; EX},

where OP = v {op) means that OP is interpreted as at least one of the op's, and OP fails if no op

succeeds; and OP = fI. {op} means that OP is interpreted as all the op 's, and OP fails if anyone of the

op's fails. Note that !:hese notations are informal descriptions of the semantics of the logical opera

tions, especially in presence of failure. They imply no implementation hints, such as parallel or

sequential executions of op 's, or lhe order of op 's in case of sequential executions.

In a system using the strict ROWA scheme, site failures never result in inconsistent data. Conse

quenUy, the site recovery (in the sense of recovery of !:he database) is unnecessary. However, the

degraded availability for write operations makes the sUict ROWA scheme impractical. In this paper

we introduce a revised scheme read-onelwrite-all-avaUable (ROWAA). Intuitively, if a lransaction

knows that site k is down, it should not try to read a copy from site k, or send an update to site k.

ROWAA not only saves the time otherwise wasted because of waiting for responses from an unavail

able site, but also reduces the possibility of aborting or blocking transactions. As mentioned in the

introduction, however, without some additional conventions user lransactions may create an unrecov

erable mess as they write to the "available" copies perceived by themselves. In the next section, we

specify the conventions for user transactions in our ROWAA scheme, and a recovery algorithm for

- 6 -

this scheme.

3. Basic Algorithm

3.1. Session Numbers and Nominal Session Numbers

As far as recovery is concerned. a site may be in three distinguishable slates. We say a site is

down if no DDBS activity is going on at the she. A site is recovering if it is in an early stage of its

recovery procedure. Its TM and DM may have been turned on (for processing control transactions as

described below) but are not yet ready to accept user Lransactions. The site is operational or, simply,

up if both TM and OM at the site work normally. We also say a site is nor operational, meaning that

the site is either down or recovering.

The dividing point at which a site goes from down to recovering, or from up (or recovering) to

down, is very clear. The point at which it goes from recovering to up depends on the recovery algo

rithm. We will define this point precisely later in this section. Note that in our algorithm some data

copies may still be out-of-date when the recovering site enters the operational stale. However, the

out-of-date copies in an operalional site must have been marked as unreadable, and will eventually be

updated by copiers or user transactions.

An operational session of a site is a Lime period in which the site is up. Each operational ses

sion of a site is designated with an integer, session number, which is unique in the site's history, but

not necessarily unique systemwide. If a site is not in an operational session, its session number is

undefined. For simplicity of description, however, we say that the site has session number 0 ifit is not

operational (assuming 0 is never used as a session number for an operational session). The session

number of site k is denoted as as [kJ.

Because sites are up and down dynamically, it is not always possible for a site to have precise

knowledge about the session number of another site. In order to have a consistent view of the session

number of a particular site i in the system, we augment lhe database with additional data items, called

nominal session numbers. We use the notation NS[k] for the data item indicating lhe nominal session

number of site k, and NS for the vector composing NS[I], ... ,NS[n]. note that the nominal session

number of site k may differ from the actual session number as [kl, but the difference should be kept

tolerable as far as possible.

- 7 -

The session number as [k] can be implemented as a variable shared by me TM and DM at site k.

That is, the TM and DM know the local session number precisely, and usc it to control their services.

For example, when a she starts recovery from an earlier failure, it turns on the TM and OM and loads

its session number with a automatically. User transactions can not be processed at site k while as [k]

is O. After the sHe finishes some necessary work (described in subsection 3.4), it loads a new session

number into as[k] and the site becomes fUlly operational. The current session number must also be

saved in a stable storage so that the next time the site recovers, a new session number can be assigned

correctly. In practice, session numbers can be recycled. Two different sessions can have Lhe same

session number as long as no single transaction is alive in both sessions.

In contrast, the nominal session numbers are data items similar to tllose in the database. They

are readable by user transactions, and writable only by control transaction (described in subsection

3.3). These read and write operations on nominal session numbers are under concurrency conlrollike

other data items. Because the nominal session numbers are read very frequently (by user transactions)

but only updaled occasionally (when sites fail and recover). we assume they are fully replicated at all

n sites. Since we use the capitalized lelters to name logical data items and the corresponding lower

cased names with subscripts for their physical copies, the copy of NS (k J at site i is denoted ns; [k], and

the vector composing nSi[lJ, ..., nSi[nJ is denoted nSi. The value of nSi is the smtus of the system as

currently perceiv:ed by site i.

3.2. User Transactions

In the ROWAA scheme, user transactions must obey the following convention. Eaeh user tran

saction implicitly reads the local copy of the nominal session vector prior to any ollier operations.

This gives the transaction a view of "current" configuration of the system. which is used by the tran

saction throughout its execution. More precisely, if a transaction, iniliated at site i. reads !.he nominal

session vector nsj. its logical operations are interpreted by the TM at site i as:

READ (X) = v {read(x,t), X,tEX and nsj [k] '# O},

WRlTE(X) = A{write (Xt), X,tEX and nSj [k] '# OJ.

Each request for reading or writing a physical copy at site k carries nSj [kJ, the session number of site k

perceived by the transaction. The DM at site k first checks this number against its actual session

number, as(kJ. If they are not equal. the request is rejecled. Otherwise, the DM carries out the

- 8 -

request. For a data copy marked as unreadable, a write operation upon it removes the mark when the

transaction commits, while a request for reading it triggers a copier transaction that renovates the

physical copy. The user transaction can either be blocked until the copier finishes, or may read some

other copy instead. We consider this decision as an implementation issue rather than a pan of lhe con

vention for user transactions, and hence leave it unspecified.

A copier transaction is responsible for refreshing a particular unreadable data copy. It reads (a

copy of) the nominal session number, locates a readable copy I uses its content to renovate the local

copy and removes the unreadable mark. If the copier cannot find a readable copy of thls data item

among the cumnUy operational sites, this item is considered totally failed. A separate protocol is

needed to resolve this problem, which is not discussed in this paper. Copier transactions may be ini

tiated by the recovery procedure one by one for individual unreadable data copies, or on a demand

basis, i.e., triggered when DM receives read requests for them. Such choices may influence the perfor

mance but not the correcrness. In any case, copier transactions are executed concurrently wilh all

orner transactions after the recovering site has entered the operational state. They follow the con

currency control protocol like all other Lransacrions.

3.3. Control Transactions

Now we discuss the possible transitions of nominal session numbers. We impose the restriction

that any changes to the nominal session numbers must be done by a special kind of transactions,

named contro[lransactions .

There are two types of control transactions. A control transaction of type I claims that a site is

nominally up. It can only be initiated by the recovering site itself when it is ready to change ils state

from recovering to operational. For example, when site k is ready to claim it is operational, it initiates

a control transaction, that reads an available copy of the nominal session vector, say,

(ns.. (1], ... , ns.. [n]), and refreshes its own copy of the nominal session vector (ns./:[l], ...• ns./:[n]), then it

chooses a session number to be used for the next operational session and writes it to ns./:[k] as well as

nSj[k] for all I s. j :5n such that nSiU] is non-zero. A control transaction of type 2 claims that one or

more sites are down. Any site can initiate this type of transactions. as long as it is sure that the sites

being claimed down are actually down. This requirement can be satisfied in systems where site

failures are the only possible failures. A transaction of this type reads a copy Oikely the local copy) of

- 9 -

the nominal session vector, and writes 0 to all available copies of the nominal session numbers for the

siLes to be claimed down.

Control transactions, like all other transactions, follow the concurrency control protocol and the

commit protocol used by the DDBS. A control transaction may be aborted due to a conflict wilh

another one, or due to a write failure (e.g. another site failure occurs during the execution of the con

[fol transaction). One difference between control transactions and user transactions is that user tran

sactions can be processed only by sites that are operational, while control transactions can be pro

cessed by recovering sites as well.

3.4. Site Recovery Procedure

The site recovery procedure proceeds as follows:

1. When a site k gets up. it turns on its 1M and DM and loads its aClual session number as[k]

with O. meaning that TM and DM arc ready La process control transactions but not user transactions.

2. The recovering site marks all data copies at its own site unreadable. Actually, only the data

copies that have missed updates since the site failed need to be marked. There are different ways to

identify such out-of·date items. We will discuss this issue in section 5.

3. After the step I and 2, the site initiates a control transaction of type 1. Notc that the control

transaction writes a newly chosen session number into flSj [k) for all operational sites i. but not as[k].

4. If the control transaction in the step 3 commits. the site is nominally up. The site can convert

its state from recovering to operational by loading the new session number into as[k]. If the step 3

fails due to a crash of another site, the recovering site must initiate a conU"oltransaction of type 2 to

exclude the newly crashed site, and then try step 3 again. Note that the recovery procedure is delayed

by the failure of another site, but the algorithm is robust as long as there is at least one operational site

in the system.

4. Correctness

4.1. Correctness Concepts

One-serializability (l-SR) has been used as the correctness criterion for transaction executions

in distributed database systems with replication. In this subsection, we briefly define the fundamental

concepts that are necessary for the correctness proof presented in the next subsection. These concepts

- 10-

are based on [3, 8], but presented in an extendible way.

An execution hislOry Df a set of transactions T = {Ta, Tb • •.. } is a panially ordered set comain~

ing all operations of these transactions. An augmented execution history is a history with an initial

lfansaclion that writes to all data copies and a final transaction that reads from all data copies. Two

augmented execution histories are equivalent if and only if they have the same read-from relations.

To simplify our arguments. we consider only the augmented execution histories in this paper. The

relation Tb reads-x-from To. is denoted as To. =:);.- Tb • A serial history is a history with total order

such that the operations from different transactions are not interlaced. A history H is serializable if

there exists a serial history I lls. equivalent La If.

A serializablility testing graph, STG, of a history H is a graph (T, -+) with the following proper-

ties:

(i) if Ta =>;0: Th then there exists an edge Ta -+ Th (Le., the graph contains all read-from edges);

(ii) there is an edge between any two transactions that write to the same data copy (called write

order edge, and a edge between two t::ransactions writing to x is denoted as --);0:);

(iii) ifTa=>"Th and Ta--)"Tc then there is an edge Tb--)Tc (called read-before edge).

Intuitively, to conslIUct a STG for a history H, we start with the read-from relation graph of H,

and arbitrarily add edges until the resulted graph satisfies the above properties. It is easy to sec that

the STas are funclionally equivalent to the bigraphs used in [8], and the main theorem on serializabil

ity theory can be stated as:

Theorem 1. A history H is seriaIizable if and only if Il has an acyclic STG.

One example of a STG is the conflict graph (CG), in which all transactions with conflicting

operations (read-write or write-write on the same data copy) are -+ related according to the order in

which their conflicting operations actually take place. Obviously, the CG of a history is one of its

STGs, hence the histories with acyclic CGs are seriaIizable. The set of histories with acyclic CGs are

called DCP in [4] and DSR in [B].

If we modify the definition of STG by replacing the word "edge" by "path" in (ii) and (iii), the

Theorem is still correct We use the notation Ta --)- Tb for the fact that there is a path from T(J to Th •

- 11 -

Now we generalize these concepts to distributed databases with replication. First we define the

READ-FROM relations. Transaction Tb READS-X-FROM Tal denoted T
Q

:::>x Tb, if there is some

Xj eX such that T.. =>", Tbo Two histories are equivalent if they have the same READ -FROM relations.

A one-copy serial history is a serial history with all physical operations replaced by corresponding

logical operations. A history II is one-serializable (l~SR) if there exists a one-copy serial history,

H Is I equivalent [0 H.

A one-seriaiizablility testing graph I l-STG, of a history H is a graph (T I -» with the following

properties:

(i) if TtJ =>x Tb then there exists an edge To. -) Tb (read-from);

(ii) there is an edge between any two transactions that write to the copies of the same data item X

(write-order, denoted as as ---'>x);

(iii) if TtJ=>xTb and T.. -')xTc then there is an edge Tb--:;Tc (read-before).

As in STG, the word "edge" in (ii) and (iii) can also be replaced by "path". However, the CG of

a history is not necessarily a I-STG. The main theorem on one-serializability can be stated as;

Theorem 2. A history H is one-serializable if and only ifH has an acyclic I-STO.

In the presence of copier rransactions, however, the conditions for I-SR, in general, cannot be

satisfied if we treat copier transactions in the same way as user transactions. For example, if we con

sider a copier Tc that refreshes a copy Xj as a writer to X, the requirement (iii) will rule out many

correct executions. In order to include such correct histories in the class of I-SR, we modify the

definition of 1-STG by taking lhe semantics of copiers into consideration.

First, we defme READ-FROM as a relation between a transaction and a non-copier transaction.

That is, a transaction Tb READS -X -FROM a non-copier transaction TQeirlIer directly, i.e. TQ~:r,Tb for

a copy Xi EX; or indirectly, i.e., there exists a copier transaction Tc such that TQ=>x Tc and Tc=>:r,Tb for

a copy X; EX. Next, the one-copy serial history is def"mcd as a serial history of lhe transactions,

excluding copiers, with their physical operations replaced by logical operations. Finally, we modify

the definition of 1-STO. In (i), we replace TQ=>x Tb by Ta =>x Tb, because READ-FROM relations

now do nO[reflect the read-from relations of copiers. In (ii), we change the word "transaction" by

"non-copier lransaction" because we are concerned only with the write order among non-copier

- 12 -

transactions. Note that an indirect READ-FROM relation now is a path rather than an edge. But

adding a READ-FROM edge will not change the acyclicness of the graph. Under these modification

we fmd that the "if' part of Theorem 2 is still valid. That is.

Corollary. A history His l-SR ifH has an acyclic l-STG (under the revised definition).

It should be noted that all concepts in the theory of serializabilicy are relative to the database.

i.e. the domain containing all data items that transactions operate on. For example, the abstraction of

a transaction in serializability theory is a sequence (or more general, a partially ordered set) of

read/write operations upon the data Hems in the database. All other activities are ignored by this

abstraction. Therefore, we can consider abstract transactions with respect to a panicular subset of the

database, meaning that only lhe operations upon data items within this subset are of concern. Simi

larly, we can consider all serializabililY conccpts with respect to this subset. In our algorithm, the

databasc, DB , is augmented by the nominal session numbers, NS. Hence, we can consider the absrract

transactions with respect to DB, NS and DB uNS. For example, with respect to NS, all but control

transactions are read-only lIansactions. Note that a correct concurrency conlfOl algorilhm ensures seri

alizability willi respect to DB uNS , but what we really want is one-serializability willi respect to DB .

4.2. Correctness Proof

The correclness of our algorithm can be prescnted as the following theorem.

Theorem 3. Based on the algorithm staled in the section 3, the conflict graph (CO) with respect to

DBVVS is a I-STO with respect to DB .

Intuitively, the theorem implies that our algorithm, togelher with a concurrency control algo·

rithm within the class ofDCP, ensures correct executions of transactions.

Proof We prove the theorem in two steps. First, we show that the CO with respect to DB uNS embo

dies the write·order and read-before paths with respect to NS. Then, we use the result to prove that the

CO also embodies Ihe write-order and read-before paths willi respect to DB .

Write-order and read-before with respect to NS. Recall that a control transaction of type 1 initiated

by site k writes to all available copies of NS [k] and brings the local copies of other nominal session

numbers up-ta-date. This control transaction is treated as a wriler only to NS [k], because to the other

session numbers this transaction acts as a copier. The read-from relations are defined accordingly.

-13 -

That is, we consider that a transaction reads NS[k] from lhe controllTansaction that assigned Lhe ses.

sian number originally rather than from the one iliat renovates the local copy of the session number.

Under this interpretation we can verify that any two control transactions writing to lhe same NS [k] are

connecled via a CO path in which each pair of two contiguous vertices (control transactions) have

intersected write sets, assuming that the system always has at least one site operational. Similarly for

read-before .relations. We omit the details here.

Write-order with respect to DB. Consider two transactions T,. and Tb I both writing to X. If their write

selS intersect. the two transactions are connected by a CO edge. OLherwise, if T., writes Xi but Tb does

not write La X; I they must read NS [i] from different control transactions, say, Tt; =>NS[ij To. and

Td =:ONSlij Tb_ Because the CG embodies write-order and read-before paths with respect to NS, we can

assume, without loss of generality, that T~ -)" Td , and conclude that To. -)" Td ,T
b

(," stands for a

path in CG).

Read-before wich respect co DB. Consider the following cases. (i) 1~ :=)'" Xb and To ,; T~. Obvi

ously Tb -) T~ because CG is a STG. (ii) T" =:0... Xb and To ,~ T~, but T~ does not write La Xi' In this

case we assume Td :=)NS[ij T" and T~ =:ONS[iJ Te , where Td and T~ are different control lransactions.

Based on our results with respect to NS, Td and T~ are ';S[I:j related, and lhe only possibility is

Td -);S[I:I T~ (mherwise CG is cyclic). Since Tb reads Xi directly, Tb must see the same session

number as To, hence Tb also reads from Td. Then we have Tb -). T. -)Te. (iii) T" ~x Tb indirectly

via copier transactions. For example, To. =:0", a copier CP and CP =:0"" Tb , and T" -); Tc where Tc

writes to some copy of X. We can apply the arguments in (i) and (ii) [0 the triples of T". CP, Te , and

CP. Tb and T~, and conclude that Tb -)" Te. Similarly for the cases in which multiple copies are

involved. D

S. Refinements

In the basic algorithm described in the section 3. we ignored the problem of identifying the data

items that have missed updates due to site failure, and simply assume that all data at the recovering

site are out-of-date. No particular mechanism has been built into our algorithm. but the algorithm is

able to work with various methods to eliminate the unnecessary work.

- 14 -

One way to identify the data items that have missed updates is to use/ail-lock [5]. Similar to a

lock on a data item used in concurrency cancro! algorithms to specify that the locked object is being

used by a transaction, a fail-lock is used in recovery algorithms as the notion that the data item is

being updated when a site is down. OUf recovery algorithm can work with the fail-lock mechanism.

When a site is recovering, it collects the fail-locks set during its failure, and marks the copies of fail

locked data items at me recovering site as unreadable.

Another practical mechanism is to use missing list (ML). ConceptuallY, a missing list is a two

dimensional array ML: {item} x {site} --) {I, OJ, where ML [X , iJ = 1 means Xj has missed updates. In

order to save s[Qrage space, an ML can be implemented in various ways, for example, as a list of pairs

(X, i) for non-zero elemems in the l\1L. The elements of the ML can be seen as data items augmemed

to the database, but need be stored in volatile storage only. Access to elements should be under con

currency control. Each site maintains an ML. Unlike NS , 1v1Ls at different sHes are considered as dif

ferent data items, ramer than copies of the same logical dam. A pair (X, k) in ML at site i means that

Xj eX , XJ:EX , and xJ: has missed an update which is done to Xi. Our algoril.hm can work wilh MLs as

follows. A write operation WRrrE(X) writes to X,. for all iEX such that site i is nominally up. It

removes (X, i), if any, from the MLs at the sites to which it writes a copy ofX successfully, and adds

(X, j) into these MLs for all j such that XjEX and site j is not available for the Lransaction. When site

i is recovering, it looks up the .MLs at all operational sites. If (X, i) appears in an ML, site i removes

the entry (X, i) from all MLs of nominally operational sites, and marks its own copy Xi as unreadable.

Site i also forms irs own ML using the entries (X, j), i;t:.j , seen in the MLs at other operational sites. It

should be noted Lhat under this mechanism, as long as a site has an up-to-date copy of a data item, the

ML of this site has the precise information on where the copies of the data item have missed updates.

We will discuss further details in a future paper.

It should be noted that there is a tradeoff between the costs of the recovery procedure and !:he

increased cost of normal operations caused by the use of mechanisms for identifying the out-of-date

data items. In systems using version numbers or timestamps, even without identifying the out-of-date

copies our basic recovery algorithm is not very expensive, because a copier can compare the version

numbers or timestamps of the two copies first, then decide whether coping dam is necessary.

6. Conclusion and Further Work

- 15 -

In this paper, we introduce a new algorithm for site recovery, including the conventions for

user-transactions (ROWAA), and the recovery procedures.

This scheme provides a very high degree of availability. A logical read or write operation on a

data item can succeed as long as onc of its copies is in an operational site, and the site's session

number is known by the transactioll

In this approach the eXLra cost to user transactions is negligible. Allhaugh all user transactions

are required to read the local copies of the nominal states, there is little overhead because these reads

do not conflict with each other. The control transactions which update the nominal session numbers

are only necessary when sites fail or recover.

The ideas presented in this paper deal with the problem of failed site integration. We believe

that the solution to the site failure problem and the concept of nominal scssion numbers are applicable

to the merging of network partitions. Full details have not been worked out but the direction of

research is outlined as follows.

The distinction between the problems of the network partition and site failure is clear. In a site

failure problem, the operational sites in the system can assume that no aclivHy occurs at the failed site.

Thus the failed site needs to integrate with the rest of the system and obtain updates missed during its

failure. This means lhat the integration is only required in one direction (from the failed site to the

operational sites). In a network partition problem, the system may allow updates on different data

items in different partitions. For example, updates can be allowcd on data items holding true-copy

tokens [7]. Whcn twO panitions merge. each partition needs to obtain missed updates from the other

partition. This can be accomplished by integrating the sites of a partition one by one with the other

partition. When a site obtains all updates from another partition, it is considered imegrated in one

direction. A site is fully integrated with anolher partition if the integration in both directions has com

pleted. Two partitions are fully integrated when all sites in each partition have fully integrated. The

integration in either direction follows a protocol similar to a failed site integration protocol discussed

in this paper. The granularity at which the integration takes place is up to the implementation.

- 16 -

References

[1] R. Attar, P. A. Bernstein, and N. Goodman. "Site initialization, recovery, and backup in a distri

buted database system," IEEE Trans. Software Eng. , vol. SE-lO, No.6. 645-650, Nov. 1984.

[2J P. A. Bernstein, and N. Goodman, "An algorithm for concurrency conlrol and recovery in repli

cated distributed databases," ACM Trans. Database Syst., vol. 9, No.4, 596-615. Dec. 1984.

[3] P. A. Bernstein, and N. Goodman, "The failure and recovery problem for replicated dambasc."

Proc. of the second ACM Symp. on Principles ofDistributed Computing, 114-122, Aug. 1983.

[4] B. Bhargava, and C. T. Hlla, "A causal model for analyzing distributed concurrency control

algorithm," IEEE Trans. Software Eng., vol. SE-9, No.4, 470-486. July 1983.

[5] B. Bhargava, "Fail-lock for a consistent database recovery during ffiulLiple failures," working
paper, Purdue University, Sept. 1985.

[6] M. M. Hammer and D. W. Shipman, "Reliability mechanism for SOD-I: A system for distri.

buted dalabases," ACM Trans. Database SySI. , vol. 5, No.4, 431-466, Dec. 1980.

[7] T. Minoura and G. Wiederhold, •'Resilient Extended True-Copy Token Scheme for a Distributed

Database System," IEEE Trans. Software Eng., vol. SE-8, No.3, 173-188, May 1982.

[8] C. H. Papadimitrou, "Serializability of concurrent updates," JACM, vol. 26, 631·653, Oct.
1979.

[9] D. Skeen, and M. Stonebreaker, .. A formal model of crash recovery in d distributed system,"

IEEE Trans. Software Eng., vol. SE-9, No.3, 219-227, May 1983.

[10] D. Skeen, "Nonblocking commit protOCOls," Proc. 1981 ACM-SIGMOD Con] Management of

Daca, ACM, New York, 133-147.

	Purdue University
	Purdue e-Pubs
	1985

	Site Recovery in Replicated Distributed Database Systems
	Bharat Bhargava
	Report Number:

